Study defines disparities in memory care (Links to an external site)

Patients who live in less affluent neighborhoods and those from underrepresented racial or ethnic groups are less likely than others to receive specialized care for dementia, including Alzheimer’s disease, a new study from Washington University School of Medicine in St. Louis indicates. Further, the research shows that Black people are more likely than white people to be diagnosed with dementia at a later, more advanced stage, which could contribute to inequities in access to new treatments.

Tau-based biomarker tracks Alzheimer’s progression (Links to an external site)

Researchers at Washington University School of Medicine in St. Louis and Lund University in Lund, Sweden, have identified a form of tau that could serve as a marker to track Alzheimer’s progression. The marker also could be used by Alzheimer’s drug developers to assess whether investigational tau-based drugs – the next frontier in Alzheimer’s drug development – are effective against the disease. Such drugs theoretically would benefit people in later stages of the disease, when tau tangles play a crucial role.

When Gut Bacteria May Be an Early Sign of Alzheimer’s Disease (Links to an external site)

In a new study published in Science Translational Medicine, researchers from Washington University in St. Louis report on another possible factor: the types of bacteria living in the gut. Experiencing changes in gut bacteria populations may be an early marker for developing the disease, the scientists found. These differences can often begin years before the first symptoms of cognitive decline, such as memory loss and confusion, appear.

Stress increases Alzheimer’s risk in female mice but not males (Links to an external site)

A study by researchers at Washington University School of Medicine in St. Louis shows that the effect stress has on the brain differs by sex, at least in mice. In stressful situations, levels of the Alzheimer’s protein amyloid beta rises sharply in the brains of females but not males. In addition, the researchers identified a molecular pathway that is active in brain cells from female mice but not male mice, and showed that it accounts for the divergent responses to stress.

Sleeping pill reduces levels of Alzheimer’s proteins (Links to an external site)

A small, two-night study has shown that people who took a sleeping pill before bed experienced a drop in the levels of key Alzheimer’s proteins — a good sign, since higher levels of such proteins tracks with worsening disease. The study, which involved a sleeping aid known as suvorexant that is already approved by the Food and Drug Administration (FDA) for insomnia, hints at the potential of sleep medications to slow or stop the progression of Alzheimer’s disease, although much more work is needed to confirm the viability of such an approach.

Discovery of T cells’ role in Alzheimer’s, related diseases, suggests new treatment strategy (Links to an external site)

In Alzheimer’s and related neurodegenerative diseases, the brain protein tau is closely linked to brain damage and cognitive decline. A new study from researchers at Washington University School of Medicine in St. Louis indicates that T cells play a key role in tau-related neurodegeneration, a finding that suggests new treatment strategies for Alzheimer’s and related diseases.

Study yields clues to why Alzheimer’s disease damages certain parts of the brain (Links to an external site)

A study by researchers at Washington University School of Medicine in St. Louis yields clues to why certain parts of the brain are particularly vulnerable to Alzheimer’s damage. It comes down to the gene APOE, the greatest genetic risk factor for Alzheimer’s disease. The parts of the brain where APOE is most active are the areas that sustain the most damage, they found.